Diagnosis: Cushing’s Disease….
Now What?

Alyssa Mourning, DVM
Raking in the CE
October 25, 2014

Outline
• Review of pathophysiology, signalment and clinical signs
• Diagnostic testing
• Treatment options

Pathophysiology
• Corticotropin Releasing Hormone (CRH)
 – Hypothalamus
• Adrenocorticotropic Hormone (ACTH)
 – Pituitary
 – Stimulates glucocorticoid from adrenal cortex
 – Suppressed by high doses of exogenous corticosteroids
 – Negative feedback by cortisol
 – Negative feedback by ACTH
Pathophysiology

- **Adrenal gland**
 - Cortex
 - Cortisol
 - Fasciculata and reticularis
 - 17\(^\alpha\)-hydroxylase
 - Cholesterol to pregnenolone – rate limiting step
 - Major site of ACTH action
 - Aldosterone
 - Zona glomerulosa
 - Renin-angiotensin system
 - Potassium concentration

Adrenal gland

<table>
<thead>
<tr>
<th>Mineralocorticoid</th>
<th>Glucocorticoid</th>
<th>Androgen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>17-OH</td>
<td>Androstenedione</td>
</tr>
<tr>
<td>Progesterone</td>
<td>17-OH</td>
<td>Androstenedione</td>
</tr>
<tr>
<td>11-Deoxy cortisol</td>
<td>11-OH*</td>
<td>Cortisol</td>
</tr>
<tr>
<td>Cortisol</td>
<td>18-OH</td>
<td>Testosterone</td>
</tr>
<tr>
<td>18-Hydroxy cortisol</td>
<td>18 OH D</td>
<td>17(\alpha)-Oxosterol</td>
</tr>
</tbody>
</table>

Pathophysiology

- Pituitary Dependent Hyperadrenocorticism (PDH)
 - 80-85% of cases
 - Most are benign adenomas; microadenomas (< 1 cm)
 - Pars distalis
 - 15-25% can be large and have invasive tendencies
 (macroadenoma, > 1 cm)
 - Dorsal expansion (hypothalamus)
 - Malignant
 - rare
Pathophysiology

- **PDH**
 - Chronic excessive secretion of ACTH
 - Adrenal gland hyperplasia
 - 5-10% of all cases have adrenocortical nodular hyperplasia (not adrenal dependent)
 - Excessive cortisol secretion
 - Inhibits normal pituitary and hypothalamic function
 - TSH (secondary hypothyroidism)
 - GH (failure to grow in puppies)
 - LH, FSH (failure of females to cycle, testicular atrophy in males)

Pathophysiology

- **Adrenal tumor hyperadrenocorticism (AT)**
 - Adenomas vs carcinomas
 - Cortisol secretion
 - Episodic, random
 - Retain ACTH receptors
 - Respond to ACTH
 - Typically unresponsive to manipulation of hypothalamic-pituitary axis with drugs
 - dexamethasone
 - Cortical atrophy of other adrenal gland
 - negative feedback

Pathophysiology

- **AT**
 - Adenoma
 - 1-6cm
 - Calcification
 - 50% of tumors
 - Carcinomas
 - Tend to be larger than adenoma
 - Highly vascular
 - Partial calcification
 - 50%
 - Metastasis (liver, lungs, other)
Pathophysiology

- Adrenocortical tumor
 - Bilateral adrenal neoplasia
 - rare
 - In conjunction with pheochromocytoma?
 - Can have both…
 - PDH and AT
 - Extremely rare, but reported

Signalment

- Middle aged, older
 - AT > PDH
- 55-60% PDH ♂, 60-65% AT ♂
- Breeds
 - Poodles
 - Dachshunds
 - Terrier breeds
 - Beagles
 - GSD
 - Boston terrier, Boxer at increased risk
- Weight
 - 75% of PDH are < 20kg
 - 50% AT are > 20kg

Clinical signs

- Clinical disorder, therefore need for clinical signs
- PU/PD
- PP
- Enlarged abdomen
- Muscle weakness/lethargy/lameness
- Skin
- Obesity
- Respiratory
- Other, rare symptoms
PU/PD

- 80-85% of HAC cases
- Normal water intake
 - 40-60ml/kg/day
- Cortisol interference with release of ADH
 - Form of central diabetes insipidus

Polyphagia

- > 90% of dogs
- Direct effect of increased glucocorticoid

Abdominal Enlargement

- Potbelly/pendulous abdomen
- > 80% of cases
- Increased weight of abdominal organs
 - Redistribution of fat (to omentum)
 - Hepatomegaly
- Decreased strength of abdominal muscles
 - Catabolic effects of cortisol
Muscle Weakness and Lameness

• Muscle wasting
• Rarely are these signs significant

• Cruciate ruptures
• Patellar luxation

Skin disease

• Alopecia
 – Atrophy of hair follicles
 • Points of wear; flanks, perineum, abdomen
 • Failure to regrow hair after shaving
• Thin skin, pyoderma
 – Comedones (keratin plugged follicles)
• Poor healing
 – Decreased fibrous tissue

Calcinotis cutis

• Dystrophic calcium deposition in dermis, subcutis
• Firm, irregular plaques
• Locations
 – Temporal region of head
 – Dorsal midline
 – Neck
 – Ventral abdomen
 – Inguinal area
Obesity

- Owner complaint; usually not true weight gain
 - Fat redistribution
 - Pot belly

- Truncal obesity
 - Loss of muscle and fat from extremities

Respiratory signs

- Panting
 - Increased fat deposition over thorax
 - Muscle wasting
 - Weakness of muscles involved in breathing
 - Increased pressure on diaphragm
 - Pulmonary interstitial mineralization
 - Thromboembolism

Myopathy

- Rare
- Persistent, active, muscle contraction after voluntary effort
 - Stiff gait
 - Non-inflammatory degenerative myopathy
 - Cause not known
 - Resolution after treatment unpredictable
PE findings

- Hyperpigmentation (increased melanocytes)
- Skin alterations
- Hepatomegaly
 - Centrilobular vacuolation
 - Hepatocellular glycogen accumulation
- SARDS
- Acute weakness/painful abdomen
 - Rupture of adrenal mass

Laboratory findings

- CBC
 - Neutrophilia, monocytosis, lymphopenia, eosinopenia
- Mild increased glucose
 - Hepatic gluconeogenesis
 - Anti-insulin effects

Laboratory findings

- Increased ALT
 - Mild, < 400 IU/L
 - Damage due to swollen cells, glycogen accumulation, interference with blood flow
- Increased ALP
 - Increased rate of production
 - Hepatic glycogen deposition, vacuolization
 - Steroid induced ALP
 - isoenzyme
Laboratory findings

- ↑ cholesterol, triglycerides, lipemia
 - Lipolysis

- Urinalysis
 - Dilute (likely < 1.020)
 - Proteinuria
 - Typically UP:C < 3, but rarely can be higher (up to 8-10)
 - Likely consequence of hypertension
 - UTI (immunosuppression, polyuria, muscle weakness)

Imaging

- Radiography
 - Hepatomegaly
 - Adrenal mass
 - 15% of cases are adrenal
 - Of these, only 50% are calcified
 - Mineralization
 - Bronchial, tracheal ring
 - Calcinosis cutis
 - Generalized interstitial lung pattern

Imaging

- Ultrasound
 - Adrenal size (normal = < 0.75cm)
 - Adrenal echogenicity = hypoechoic to renal cortex
 - Adrenal tumors = enlarged, irregular, rounded
 - < 2cm likely malignant
 - > 4cm malignant
 - Incidental mass?
 - Reassess in 4-6 weeks if not invading vital structures
Complications from HAC

- Hypertension
 - Hypervolemia

- Pyelonephritis
 - Immunosuppression

- Urinary calculi
 - Increased calcium excretion

- CHF
 - Hypervolemia, myocardial workload increases, followed by hypertrophy

Complications from HAC

- Diabetes
 - Insulin resistance

- Pulmonary thromboembolism (PTE)
 - Hypercoagulable state

- Obesity, hypertension, increased HCT, sepsis

Pituitary macrotumors

- Signs – typically subtle, slowly progressive
- Dull, listless, inappetant
- Disorientation
- Altered mentation, ataxia, pacing
- Circling, head pressing, blindness, seizures, coma
- Diagnosis – advanced imaging (CT, MRI)
 - Endocrine tests cannot help not differentiate
Diagnostic Testing

- Screening tests: Does he or doesn't he?
 - ACTH stimulation
 - Low Dose Dexamethasone Suppression (LDDS)
 - Urine cortisol:creatinine

 Sensitive, but not specific
 - Good negative predictive value
 - (if negative, unlikely HAC)
 - Collect at home?

Urine cortisol:creatinine

ACTH stimulation

- Thought process
 - Either PDH or AT, adrenal cortex has capacity to secrete more cortisol when stimulated by ACTH
- Protocol
 - No prep needed
 - Draw sample, give ACTH, draw sample 1-2 hours later
 - Synthetic, draw 1 hour post
- HAC?
 - Should capture 60% of HAC
 - False positive in up to 15% of cases (non-adrenal disease)
 - Iatrogenic HAC
 - Response to treatment
Low Dose Dexamethasone Suppression

- Inhibits pituitary secretion of ACTH via negative feedback
 - Decreases endogenous cortisol secretion for up to 24-48 hours
 - Do not run on ill dogs
 - When used appropriately, sensitivity can reach 99%
 - Affected by more variables than ACTH stimulation

Low Dose Dexamethasone Suppression

- PDH
 - Resistant to normal negative feedback mechanism

- AT
 - Already producing excessive cortisol
 - Already negative feedback to ACTH

Low Dose Dexamethasone Suppression

- PDH
 - Cortisol > 1.4µg/dl @ 8 hour
 - Results
 - Unchanged (35%)
 - Greater than basal
 - Same as basal
 - Suppressed, but greater than 50% of basal (lack of suppression)
 - Decreased (65%)
 - < 1.4µg/dl @ 4 hour
 - < 50% of basal @ 4 hour
 - < 50% of basal @ 8 hour
Low Dose Dexamethasone Suppression

• AT
 – Cortisol > 1.4µg/dl @ 8 hour
 – Cortisol levels do NOT suppress at any time

Diagnostic Testing

• Discriminating tests
 – LDDS
 – Endogenous ACTH
 – High dose dexamethasone suppression (HDDS)
 – CT/MRI (macroadenoma)

LDDS

• Cortisol > 1.4µg/dl @ 8 hour
• Dexamethasone transiently suppresses ACTH (60-65%)
 – 3-6 hours duration (rather than 24-48 as in normal dogs)
• 1 of 3 things needs to happen (already confirmed HAC) to be consistent with PDH (60-65%)
 – 4 hr cortisol less than 1.4µg/dl
 – 4 hr cortisol less than 50% of basal level
 – 8 hr cortisol concentration less than 50% basal
• Lack of suppression = non-specific
Endogenous ACTH

- AT, iatrogenic HAC
 - Suppressed ACTH
- PDH
 - Increased ACTH

Careful handling/sampling required

HDDS

- AT
 - Never suppresses
- PDH
 - May be dose dependent (larger doses may suppress ACTH via negative feedback)

Suppression:
- Cortisol < 50% baseline at 4 OR 8 hours
- Cortisol < 1.4µg/dl at 4 OR 8 hours

- 75% of PDH cases meet the above criteria

HDDS

- AT
 - No suppression

- PDH
 - 60% of cases will have cortisol < 50% baseline at 4 and/or 8 hours
MRI/CT scan

• Dogs with PDH with neurologic signs

• Testing for prognostic purposes in PDH dogs
 – Irradiation of tumors

Treatment

• Medical therapy
 – Mitotane
 – Trilostane
 – Ketoconazole

• Surgical therapy
 – Adrenalectomy
 – Hypophysectomy

• Confirm HAC

• Differentiate between pituitary vs adrenal
 – Treatment options
 – Prognosis
 – Client expectations
Mitotane

- Adrenocortico lytic drug
 - Necrosis to zona fasciculata and zona reticularis
- Most dogs respond within 5-9 days

Mitotane

- Loading
 - 50mg/kg/day, DIVIDED
 - Give with food
 - Phase should be stopped/discontinued if:
 - Appetite
 - Feed 2/3 of normal intake, divided
 - Once any sign of reduction in appetite, phase is complete
 - Water intake
 - Takes < 66ml/kg/day
 - Vomiting
 - Diarrhea
 - Lethargy

Mitotane

- Communicate with owner
- Recheck patient within a week of starting drug

- Goals
 - Clinically normal dog
 - ACTH
 - Pre < 5µg/dl
 - Post > 1µg/dl, but < 5µg/dl
Mitotane

- What can an owner expect:
 - Increased activity within a week
 - Decreased PU/PD within a week or two
 - Improved muscle strength in days to weeks
 - Improved pot bellied appearance days to weeks
 - Months before improvement noted in thin skin, panting, alopecia, calcinotis cutis
 - Months for liver enzymes, cholesterol
 - Blood pressure improvement 3-6 months

Mitotane and the Adrenal tumor

- Same initial treatment protocol
- One week
 - Improved ACTH stim, but not ideal: continue on 50mg/kg/day, divided
 - If results similar to that prior to therapy, increase to 75-100mg/kg/day, divided
- Recheck ACTH stim @ day 14
 - Repeat as above
 - May need to continue to increase dose until response is documented
- ~60% response rate
- Median survival 16 months

Mitotane: maintenance dosing

- Respond, but post ACTH stim < 1µg/dl
 - Stop for 2 weeks
 - 25mg/kg/week
- Post ACTH stim >1µg/dl but < 3µg/dl
 - 25mg/kg/week
- Post ACTH stim > 3µg/dl
 - 50mg/kg/week
- Doses should always be divided into what is practical
Mitotane: maintenance dosing

• Recheck ACTH stim 1, 3 months after maintenance therapy
• If post > 5µg/dl, then can increase dose by 25%
• Recheck patients, if stable, every 3-4 months
 – Physical examination
 – ACTH stimulation testing

Mitotane: prognosis

• Median life span after diagnosis and treatment
 – 31.6 months
 • Median age of diagnosis is 11 years
• Relapses are common
• Overtreatment can occur
 – Crisis

Trilostane

• Inhibits 3β–hydroxysteroid dehydrogenase
 – inhibits the synthesis of several steroids in the adrenal cortex, including glucocorticoids and mineralocorticoids
• Dosing
 • Low dose twice daily (~1mg/kg bid)
 – Better tolerated, but slower to improve
 • Higher dose once daily (30mg/dog)
 – Improved more rapidly, but also developed signs of hypoadrenocorticism in 2/7 dogs
Trilostane - compounded

 - Trilostane content of compounded capsules may vary from the prescribed strength, and dissolution characteristics may not match those of the licensed product
 - The use of compounded trilostane products may therefore negatively impact the management of dogs with hyperadrenocorticism.

Vetoryl® vs compounded trilostane

- Vetoryl® Capsules
 - FDA approved
 - Tech support
 - Consistency
 - Confidence in content of capsule
 - Liability — using approved product
- Compounded
 - Not FDA approved
 - No tech support
 - Variability in dissolution and content
 - Liability — VET!

Trilostane

- Monitoring
 - 2-6 hours after dosing
 - ACTH stimulation
 - Goals — post stim: 1-5 µg/dL

- Expectations
 - 60-100% improvement within 3-6 months
How do you know the dose is too high?

- Anorexia and lethargy – common early signs
- Post-cortisol below 1.45 µg/dl
- Evidence of hyperkalemia, hyponatremia, and Na:K ratio < 27

When to consider BID dosing

- Concurrent diabetes mellitus
- Dog dosed in morning, symptoms controlled during the day, but symptoms become apparent in evening.
- Dog still symptomatic, but ACTH stimulation results are within the target zone (1.45 – 9.1 µg/dl)
- Vet/owner not satisfied with progress
- Difficulty in managing concurrent hypertension with SID Vetoryl and/or anti-hypertensive medications

Timing of ACTH stimulation samples

4-6 hr post dosing
VETORYL® activity

- Peak plasma trilostane concentrations at 0.5 – 1.5 hr
- Ketotrilostane 1-1.5 hr (active metabolite)
- Rapidly absorbed from the gastrointestinal tract
- Dosing with food significantly ↑ rate & extent of absorption

VETORYL® CAPSULES

available in: 10 mg, 30 mg, 60mg, and 120mg

Mitotane vs Trilostane

- Barker, et. al
 - 148 dogs with PDH
 - 2 groups
 - Mitotane
 - Trilostane
 - Median survival
 - Mitotane = 708 days
 - Trilostane = 662 days
 - *no statistical difference
Mitotane vs. Trilostane

- Helm, et. al
 - 37 dogs with AT
 - 3 groups
 - Mitotane
 - Trilostane
 - Both
 - No statistical difference

Key differences between a dog on Vetoryl versus Lysodren

1) NO induction period with Vetoryl
2) Target ranges:
 - Vetoryl 1.45 – 9.1 ug/dl
 - Lysodren 1.45 – 4.5 ug/dl
 - Target range is broader with Vetoryl
3) ACTH stim: 4-6 hour dosing with Vetoryl
 - ACTH stim: anytime with Lysodren

Ketoconazole

- Affects steroid biosynthesis at high doses
 - 30mg/kg/day
- Indications?
 - Not tolerating traditional therapy
- Cons
 - Expensive
 - Failure to respond
 - BID dosing indefinitely
Adrenalectomy

- Prognosis: Excellent
 - IF tumor can be removed and patient survives 1st 2 weeks
 - Average life expectancy = 36 months
- Adrenal tumors spread to liver, lungs
- Advanced imaging
 - Small (= ½ kidney) = likely benign
 - Large (≥ 1 kidney) = not likely to be benign
- Surgical candidate?
 - BP, UP, UC
 - Tumor size
 - Metastasis
 - Owner understanding – thromboembolic complications

Hypophysectomy

- 150 dogs
- Survival rates
 - 1year – 84%
 - 2year – 76%
 - 3year – 72%
 - 4year – 68%
- 8% died
- 6 had incomplete surgeries
- Relapse free rates
 - 1year – 88%
 - 2year – 75%
 - 3year – 66%
 - 4year – 58%
- Risks
 - CDI
 - KCS

www.bluepearlvet.com